fbpx

An infrared image of 47 Tucanae, a dense globular cluster of stars located roughly 16,000 light years from Earth. A new study has predicted that a black hole lies at its center. (2MASS / T. Jarrett)

A new method could help scientists peer inside universe’s densest star clusters to find undiscovered black holes

Approximately 16,000 light years from Earth lies a spherical glob of millions of stars dating back to the early years of the universe. This dense cluster, called 47 Tucanae, has a radius of about 200 light years and is one of the brightest clusters in our night sky. Inside 47 Tucanae, intense gravitational forces have sorted stars over time, pushing less dense stars to the outside and creating a very dense inner core that resists outside scrutiny.

"Studying globular clusters is notoriously challenging," says Bülent Kiziltan, an astrophysicist at the Harvard-Smithsonian Center for Astrophysics. There are so many stars packed next to each other, he says, that capturing radiation from the center of one is next to impossible. So while scientists have long suspected that 47 Tucanae might contain a black hole at its center, as many other globular clusters appear to, they haven’t been able to prove it.

Now, in a study published yesterday in the journal Nature, Kiziltan and his colleagues have helped peer into the heart of 47 Tucanae to find the first of a new class of medium-sized black holes.

Despite their name, black holes aren’t actually that black, Kiziltan says. As they tear apart stars unlucky enough to wander into their pull, he says, they form a disk of bright, hot gases around them known as an accretion disk. Black holes don’t let any visible light escape, but they usually emit X-rays as they consume these gases. However, 47 Tucanae is so dense that it has no gases left at its center for the black hole to consume.

Kiziltan used his expertise in another quirky type of space object—pulsars—to try a new way of detecting these elusive kinds of black holes.

Pulsars "provide us with a platform that we can use to study very minute changes in the environment," Kiziltan says. These stars, which emit "pulses" of radiation at very regular intervals, can be used as reference points to map out cosmic formations, including globular clusters; Kiziltan likens them to "cosmic atomic clocks."  

With two dozen pulsars on the edges of 47 Tucanae as guides, Kiziltan and his team were able to build simulations of how the globular cluster evolved over time, and particularly how the denser and less dense stars sorted themselves into their present-day positions.

These simulations were massive undertakings, Kiziltan says, requiring roughly six to nine months to complete even on extremely powerful computers. Which is why he wasn’t thrilled, he says, when reviewers at Nature asked for further simulations that ended up taking another year to complete.

But that effort was worth it, Kiziltan says, because it led to something unprecedented: the first discovery of a black hole inside a globular cluster. After running hundreds of simulations, he says, the only possible scenario that could lead to the development of today's 47 Tucanae featured a black hole at the global cluster's dense, gas-less center. This previously unconsidered environment for a black hole opens up new places to look for them, Kiziltan says.

"One can only imagine what is lurking in the centers of other global clusters," Kiziltan says.

What is also exciting, Kiziltan notes, is the size of the black hole his simulations predicted. So far, scientists have mostly found small black holes (those roughly the size of the stars that collapsed to form them) and supermassive black holes (those thousands of times larger than our Sun). Intermediate-sized black holes have mostly eluded scientists—though not for lack of trying.

The black hole predicted at the center of 47 Tucanae falls within this rare middle ground, Kiziltan says. Further study of this potential black hole could provide new insights on how and why these largely unknown type of black holes form.

Perhaps even more important than the discoveries themselves is how Kiziltan and his team arrived at them. Kiziltan and his collaborators drew on a mathematical theory developed in the 1950s by two American cryptographers to help chart the probable distributions of stars in 47 Tucanae. "They developed this mathematical method to piece together incomplete information to see the bigger picture," Kiziltan says.

Kiziltan is working to refine their new approach and use this new method to look at other populations of stars for previously unseen black holes. Powerful new scientific computers and other instruments that will go online in the coming years will help with this quest, he says.

"We've done many things for the first time in this work," Kiziltan says. At the same time, “there are still so many things that need to be done.”

Source: This article was published smithsonianmag.com By Ben Panko

Categorized in Science & Tech

If event horizons are real, then a star falling into a central black hole would simply be devoured, leaving no trace of the encounter behind.

If you collect more and more matter in a small enough volume of space, it gets harder and harder to escape from its gravitational pull. Gather enough mass there, and you'll find that the speed you'd need to reach in order to escape is greater than the speed of light! From within that region, escape is impossible, and you have a black hole. From farther out, where the escape velocity is lower than the speed of light, matter and radiation can make it out. The border of these two regions is known as the event horizon, and is one of the most important predictions of General Relativity that's never been tested. Until now, that is, where the signs that matter completely disappears when it crosses over cannot be ignored.

{youtube}AZhUQl-wmq0{/youtube}

At the center of our galaxy, we find the largest black hole within more than a million light years. By observing the orbits of the stars in its vicinity, we can determine that there's an object with:

  • the mass of around 4 million Suns,
  • that occasionally flares in certain wavelengths (X-ray and radio) of light,
  • that emits no visible/infrared light,
  • and that is consistent with a black hole.

But we've never determined whether it truly has an event horizon or not. Sure, General Relativity has been successful every time we've been able to test it out, but every new challenge is a new opportunity to learn something new about the Universe.

Although there are gas outflows and radio/x-ray signals from matter that isn't absorbed by a black hole, nothing should be able to leave/exit once crossing the event horizon.

Top, optical, Hubble Space Telescope / NASA / Wikisky; lower left, radio, NRAO / Very Large Array (VLA); lower right, X-ray, NASA / Chandra X-ray telescope

Although there are gas outflows and radio/x-ray signals from matter that isn't absorbed by a black hole, nothing should be able to leave/exit once crossing the event horizon.

There are always alternatives to consider, and there are a whole class of modifications to gravity we can make that make it possible for event horizons to not exist at all. In these scenarios, instead of an event horizon surrounding a singularity, a giant mass like this would have a hard surface that objects could smash themselves against. If this were the case, you'd be able to tell the difference in one of two ways. The first (and most obvious) way would be with direct imaging: if you achieved sufficiently good resolution, a telescope would be able to see the event horizon for itself... or to find no horizon at all, if one of the alternatives to General Relativity were true. The Event Horizon Telescope, whose first results are due out later this year, should be able to see whether an event horizon really exists.

Five different simulations in general relativity, using a magnetohydrodynamic model of the black hole's accretion disk, and how the radio signal will look as a result. Note the clear signature of the event horizon in all the expected results.

GRMHD simulations of visibility amplitude variability for Event Horizon Telescope images of Sgr A*, L. Medeiros et al., arXiv:1601.06799

Five different simulations in general relativity, using a magnetohydrodynamic model of the black hole's accretion disk, and how the radio signal will look as a result. Note the clear signature of the event horizon in all the expected results.

But there's a second way that doesn't rely on direct imaging, and can find the answer anyway. Supermassive black holes occur not only at our own galaxy's center, but at the central cores of most large galaxies throughout the Universe. Our Milky Way's black hole, at four million solar masses, may actually be on the low end: many galaxies have black holes that extend up into the billions or even tens of billions of solar masses. The bigger a black hole is, the larger the cross-sectional area of its event horizon is predicted to be, meaning that it has a much larger chance for a passing object to impact it.

An illustration of an active black hole, one that accretes matter and accelerates a portion of it outwards in two perpendicular jets, may describe the black hole at the center of our galaxy in many regards. But nothing from within the event horizon could ever get out.

Mark A. Garlick

An illustration of an active black hole, one that accretes matter and accelerates a portion of it outwards in two perpendicular jets, may describe the black hole at the center of our galaxy in many regards. But nothing from within the event horizon could ever get out.

The largest known black holes have diameters about ten times the size of Pluto's orbit, meaning that if we view very large numbers of them for long enough, we should witness a star running into one of them eventually. The Pan-STARRS telescope, having just completed a huge set of deep observations for 3.5 years — covering some 3/4ths of the entire sky repeatedly — was able to look for transient events, or temporary brightenings and dimmings. If event horizons are real, swallowed stars wouldn't create a transient signal, but star colliding with a hard surface would create a significant burst of light.

If a hard surface, rather than an event horizon, exists around a supermassive object, a collision should result in a luminous burst that telescopes like Pan-STARRS should easily perceive.

Mark A. Garlick / CfA

If a hard surface, rather than an event horizon, exists around a supermassive object, a collision should result in a luminous burst that telescopes like Pan-STARRS should easily perceive.

According to Wenbin Lu, a scientist who studied these observations to test the hard-surface theory,

Given the rate of stars falling onto black holes and the number density of black holes in the nearby universe, we calculated how many such transients Pan-STARRS should have detected over a period of operation of 3.5 years. It turns out it should have detected more than 10 of them, if the hard-surface theory is true.

Given all the black holes with masses greater than 100 million solar masses, there should have been a definitive signature if there's a hard surface outside of the black hole's event horizon. Yet no signature at all was seen.

After the collision of a star with a hard-surface around a supermassive object, a large, temporary increase in luminosity would result, yet no such changes have been seen around any of the supermassive black holes within the view of Pan-STARRS.

Mark A. Garlick/CfA

After the collision of a star with a hard-surface around a supermassive object, a large, temporary increase in luminosity would result, yet no such changes have been seen around any of the supermassive black holes within the view of Pan-STARRS.

Ramesh Narayan, a coauthor on the new study, was happy to articulate what it all meant,

Our work implies that some, and perhaps all, black holes have event horizons and that material really does disappear from the observable universe when pulled into these exotic objects, as we’ve expected for decades. General Relativity has passed another critical test.

Of course, it's not really possible to prove that the event horizon is real, but this work allows some impressive constraints to be placed.

Theoretical calculations predict an event horizon to all black holes, obscuring the central region in accordance with General Relativity. This is a prediction that has never been tested observationally, until now.

Ute Kraus, Physics education group Kraus, Universität Hildesheim; Axel Mellinger (background)

Theoretical calculations predict an event horizon to all black holes, obscuring the central region in accordance with General Relativity. This is a prediction that has never been tested observationally, until now.

If there is a hard surface, it must be within 0.01% the radius of the expected event horizon, given the lack of transient signals observed. A heat signature in the optical/infrared would be expected, which is exactly what Pan-STARRS would be sensitive to. Yet nothing was observed. In the future, the Large Synoptic Survey Telescope (LSST), which will have more than 20 times the light-gathering power of Pan-STARRS, will be able to constraint the event horizon to a ridiculously small size. But the LSST won't begin doing science until 2021, if things remain on schedule.

A view of the different telescopes contributing to the Event Horizon Telescope's imaging capabilities from one of Earth's hemispheres. Data was taken in April that should enable the detection (or non-detection) of an event horizon around Sagittarius A* within the next year.

APEX, IRAM, G. Narayanan, J. McMahon, JCMT/JAC, S. Hostler, D. Harvey, ESO/C. Malin

A view of the different telescopes contributing to the Event Horizon Telescope's imaging capabilities from one of Earth's hemispheres. Data was taken in April that should enable the detection (or non-detection) of an event horizon around Sagittarius A* within the next year.

By that point, the data from the Event Horizon Telescope will already be in. If the event horizon is actually, physically real, we won't need indirect proof like this; we'll already have a picture. In the meantime, we should celebrate the new evidence we have, and recognize what it means: when something falls into a black hole, there is no bounce-back, shattering, or ejecta from within. Once you slip past the event horizon, you're destined to fall all the way into the central singularity. As far as black holes go, there really is a point of no return.

Astrophysicist and author Ethan Siegel is the founder and primary writer of Starts With A Bang! Check out his first book, Beyond The Galaxy, and look for his second, Treknology, this October!

Source: This article was published forbes.com By Ethan Siegel

Categorized in Science & Tech

airs logo

Association of Internet Research Specialists is the world's leading community for the Internet Research Specialist and provide a Unified Platform that delivers, Education, Training and Certification for Online Research.

Get Exclusive Research Tips in Your Inbox

Receive Great tips via email, enter your email to Subscribe.

Follow Us on Social Media

Book Your Seat for Webinar - GET 70% OFF FOR MEMBERS ONLY      Register Now