fbpx

Blogs

  • Home
    Home This is where you can find all the blog posts throughout the site.
  • Categories
    Categories Displays a list of categories from this blog.
  • Tags
    Tags Displays a list of tags that have been used in the blog.
  • Bloggers
    Bloggers Search for your favorite blogger from this site.
  • Archives
    Archives Contains a list of blog posts that were created previously.
  • Login
    Login Login form
04
Nov

Yandex launches new algorithm named Palekh to improve search results for long-tail queries

Posted by on in Search Engines
  • Hits: 2045

Did Yandex's new algorithm Palekh just go head to head with Google's RankBrain?

Yandex announced on their Russian blog that they have launched a new algorithm aimed at improving how they handle long-tail queries. The new algorithm is named Palekh, which is the name of a world-famous Russian city that has a firebird on its coat of arms.

The firebird has a long tail, and Yandex, the largest Russian search engine, used that as code name for long-tail queries. Long-tail queries are several words entered into the search box, more often seen in voice queries these days. Yandex says about 100 million queries per day fall under the “long-tail” classification within their search engine.

The Palekh algorithm allows Yandex to understand the meaning behind every query, and not just look for similar words. Which reminds me of Google RankBrain. I asked Yandex if it is similar to Google’s RankBrain, and they said they “don’t know exactly what’s the technology behind Google’s RankBrain, although these technologies do look quite similar.”

Yandex’s Palekh algorithm has started to use neural networks as one of 1,500 factors of ranking. A Yandex spokesperson told us they have “managed to teach our neural networks to see the connections between a query and a document even if they don’t contain common words.” They did this by “converting the words from billions of search queries into numbers (with groups of 300 each) and putting them in 300-dimensional space — now every document has its own vector in that space,” they told us. “If the numbers of a query and numbers of a document are near each other in that space, then the result is relevant,” they added.

When I asked if they are using machine learning, Yandex said they do use machine learning and explained that they teach their “neural network based on these queries will lead to some advancements in answering conversational based queries in the future.” Adding that they “also have many targets (long click prediction, CTR, “click or not click” models and so on) that are teaching our neural network — our research has showed that using more targets is more effective.”

Source : searchengineland

Rate this blog entry:
0

Comments

airs logo

Association of Internet Research Specialists is the world's leading community for the Internet Research Specialist and provide a Unified Platform that delivers, Education, Training and Certification for Online Research.

Get Exclusive Research Tips in Your Inbox

Receive Great tips via email, enter your email to Subscribe.

Follow Us on Social Media